翻訳と辞書
Words near each other
・ Quantum compression
・ Quantum computing
・ Quantum concentration
・ Quantum configuration space
・ Quantum contextuality
・ Quantum Conundrum
・ Quantum convolutional code
・ Quantum Corporation
・ Quantum correlation
・ Quantum cosmology
・ Quantum coupling
・ Quantum critical point
・ Quantum cryptography
・ Quantum cylindrical quadrupole
・ Quantum Darwinism
Quantum decoherence
・ Quantum defect
・ Quantum depolarizing channel
・ Quantum Detectors
・ Quantum differential calculus
・ Quantum digital signature
・ Quantum dilogarithm
・ Quantum dimer models
・ Quantum discord
・ Quantum dissipation
・ Quantum dot
・ Quantum dot cellular automaton
・ Quantum dot display
・ Quantum dot laser
・ Quantum dot solar cell


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quantum decoherence : ウィキペディア英語版
Quantum decoherence

In quantum mechanics, quantum decoherence is the loss of coherence or ordering of the phase angles between the components of a system in a quantum superposition. One consequence of this dephasing is classical or probabilistically additive behavior. Decoherence occurs when a system interacts with its environment in a thermodynamically irreversible way. This prevents different elements in the quantum superposition of the total system's wavefunction from interfering with each other. Decoherence was first introduced in 1970 by the German physicist H. Dieter Zeh and has been a subject of active research since the 1980s.
Decoherence can be viewed as the loss of information from a system into the environment (often modeled as a heat bath), since every system is loosely coupled with the energetic state of its surroundings. Viewed in isolation, the system's dynamics are non-unitary (although the combined system plus environment evolves in a unitary fashion). Thus the dynamics of the system alone are irreversible. As with any coupling, entanglements are generated between the system and environment. These have the effect of sharing quantum information with—or transferring it to—the surroundings.
Decoherence does not generate ''actual'' wave function collapse. It only provides an explanation for the ''observation'' of wave function collapse, as the quantum nature of the system "leaks" into the environment. That is, components of the wavefunction are decoupled from a coherent system, and acquire phases from their immediate surroundings. A total superposition of the global or universal wavefunction still exists (and remains coherent at the global level), but its ultimate fate remains an interpretational issue. Specifically, decoherence does not attempt to explain the measurement problem. Rather, decoherence provides an explanation for the transition of the system to a mixture of states that seem to correspond to those states observers perceive. Moreover, our observation tells us that this mixture looks like a proper quantum ensemble in a measurement situation, as we observe that measurements lead to the "realization" of precisely one state in the "ensemble".
Decoherence represents a challenge for the practical realization of quantum computers, since such machines are expected to rely heavily on the undisturbed evolution of quantum coherences. Simply put, they require that coherent states be preserved and that decoherence is managed, in order to actually perform quantum computation.
==Mechanisms==
To examine how decoherence operates, an "intuitive" model is presented. The model requires some familiarity with quantum theory basics. Analogies are made between visualisable classical phase spaces and Hilbert spaces. A more rigorous derivation in Dirac notation shows how decoherence destroys interference effects and the "quantum nature" of systems. Next, the density matrix approach is presented for perspective.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quantum decoherence」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.